A systematic approach for designing learning environments for energy efficiency in industrial production
Agenda

- Energy Efficiency in Industry
- ETA Learning Factory
- Learning Environments for Energy Efficiency
- The LE³-Guide
- Application of the LE³-Guide
Introduction

Energy efficiency in industry

Ambitious saving targets for the industry

- Solution rather complex
- Each factory unique
- Holistic approaches rarely taken into consideration

Industry continues to be the major energy consumer in Germany!

Machine and automotive manufacturing

- Increase in production leads to increase in energy consumption
- Significance of the sector regarding the energy transition is increasing
Background: Research-Projecht: ETA-Factory

Today: Isolated optimization of different sub-systems of a factory

Building 25%

Process chain 20%

Machine 30%

Savings < 30%

Our vision: Holistic factory optimization including all sub-systems

Interaction of:
- Machines
- Process chains
- Buildings

Synergies by energy controlling and recovery measures

Potential ~ 40%
ETA-Factory – Impact you can feel
For excellent research, knowledge transfer & sustainable results

Using the ETA-Factory for demonstrating Best-Practice-Examples of industrial energy efficiency.

Establishing a Competence- and Transfer Center together with our industrial partners.

Excellent Education of future engineers and professional development in the areas of architecture, civil and mechanical engineering.
ETA Learning Factory

Target groups

Industry
- Factory & Production Planners
- Managers
- Controllers
- Energy Managers
- Machine Designers
- Shop-floor workers

Technical Planners
- Architecture
- Heating & Air Conditioning
- Energy Networks
- Pressurized Air

Students
- Bachelor, ’raise enthusiasm’
- Master, ’deepen knowledge’

General Visitors
- Politicians
- Association Members
- Funding Parties

Source: tab Fachmagazin TGA
Learning environments for energy efficiency

Required skills for the energy efficiency topic

<table>
<thead>
<tr>
<th>Background & Sensitizing</th>
<th>Tools & Techniques</th>
<th>Technology understanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motivation</td>
<td>Energy policies and principles</td>
<td>Financing models</td>
</tr>
<tr>
<td>Identification of potentials</td>
<td>Elimination of energy wastes</td>
<td>Planning of implementations</td>
</tr>
<tr>
<td>Energy data</td>
<td>Cross-section technologies</td>
<td>Energy efficiency technologies</td>
</tr>
</tbody>
</table>

Different learning environments are necessary to focus on the relevant subsystems and target groups
- Building technology
- Machining processes
- Cleaning processes
- Hardening processes
- Process chain

There is the danger of focusing too much on a presentation of innovations than didactic principles.
Main objectives of the LE³-Guide:

Guidance for the design of learning environments for energy efficiency
- Target group oriented
- Adapted to the boundary conditions

Result of the LE³-Guide:

Requirements Catalogue
- Proposals and indications for the design

How could a learning environment for a particular target group look at given boundary conditions?

Learning Environment Designer

Requirements Catalogue
- Prioritized Learning Objectives
- Features & Specifications
LE³-Guide
General Conditions

Learning Environment Designer

1. Questionnaire I: General Conditions
 - Purpose
 - Target Group
 - Resources

2. Basic Type of LE
 - Learning Objectives & Design Features

3. Questionnaire II: Learning Objectives & Design Features

4. Check List
 - Requirements Catalogue
 - Prioritized Learning Objectives
 - Features & Specifications
Definiton of basic types of learning environments depending on
- Purpose
- Target group

<table>
<thead>
<tr>
<th>Categorization based on the answers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Type</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>B3</td>
</tr>
<tr>
<td>C1</td>
</tr>
<tr>
<td>C2</td>
</tr>
<tr>
<td>D1</td>
</tr>
<tr>
<td>D2</td>
</tr>
</tbody>
</table>
LE³-Guide
Learning Objectives & Design Features

Learning Environment Designer

1. Questionnaire I: General Conditions
 - Purpose
 - Target Group
 - Resources

2. Basic Type of LE

3. Learning Objectives & Design Features

4. Questionnaire II: Learning Objectives & Design Features

5. Requirements Catalogue
 - Prioritized Learning Objectives
 - Features & Specifications

6. Check List
LE³-Guide

Learning Objectives & Design Features

To each type different learning objectives are assigned

<table>
<thead>
<tr>
<th>Learning objectives for energy efficiency</th>
<th>Fascination</th>
<th>Sensitization</th>
<th>Analyzation</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A1</td>
<td>B1</td>
<td>B2</td>
<td>B3</td>
</tr>
<tr>
<td></td>
<td>C1</td>
<td>C2</td>
<td>D1</td>
<td>D2</td>
</tr>
<tr>
<td>Motivation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Typical energy costs related to the technology known</td>
<td></td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Energy efficiency potentials in the subject known</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fundamentals</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Important physical factors and units known</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Types of energy waste</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tools & Techniques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sankey</td>
<td></td>
<td></td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Theoretical Limit</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
LE³-Guide
Learning Objectives & Design Features

To each type different learning objectives are assigned

<table>
<thead>
<tr>
<th>Feature</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstraction level</td>
<td>Schematic without reference to a product</td>
</tr>
<tr>
<td>Extent of participation</td>
<td>Without interaction</td>
</tr>
<tr>
<td>Complexity</td>
<td>Directly apparent</td>
</tr>
<tr>
<td>Modularity</td>
<td>Inflexible</td>
</tr>
<tr>
<td>Transportability</td>
<td>Not mobile</td>
</tr>
<tr>
<td>Visualization (energy)</td>
<td>Static</td>
</tr>
<tr>
<td>Haptics (energy)</td>
<td>None</td>
</tr>
<tr>
<td>Acoustics (energy)</td>
<td>None</td>
</tr>
<tr>
<td>Accompanying material</td>
<td>None</td>
</tr>
</tbody>
</table>
LE³-Guide
Questionnaire II

Learning Environment Designer

1. Questionnaire I: General Conditions
 - Purpose
 - Target Group
 - Resources

2. Basic Type of LE
 - Learning Objectives & Design Features

3. Questionnaire II: Learning Objectives & Design Features

4. Check List
 - Requirements Catalogue
 - Prioritized Learning Objectives
 - Features & Specifications
LE³-Guide
Requirements Catalogue

Learning Environment Designer

1. Questionnaire I: General Conditions
2. Basic Type of LE
3. Learning Objectives & Design Features
4. Questionnaire II: Learning Objectives & Design Features
5. Requirements Catalogue
 - Prioritized Learning Objectives
 - Features & Specifications
6. Check List

Purpose | Target Group | Resources
Requirements Catalogue: Applicable in green- and brownfield

Form sheet:

<table>
<thead>
<tr>
<th>Learning environment type:</th>
<th>Knowledge Transfer</th>
<th>Physical Design</th>
</tr>
</thead>
<tbody>
<tr>
<td>Priority</td>
<td>Learning objective</td>
<td>DoF 1</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 x Sum (max. 45)</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2 x Sum (max. 30)</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1 x Sum (max. 15)</td>
<td>1 x Sum (max. 15)</td>
</tr>
</tbody>
</table>

Scale for a brownfield application:

<table>
<thead>
<tr>
<th>Degree of Fulfillment: Only for brownfield-applications, do not fill in greenfield-uses</th>
<th>Not fulfilled</th>
<th>Slightly fulfilled</th>
<th>Partially fulfilled</th>
<th>Largely fulfilled</th>
<th>Completely fulfilled</th>
<th>Total points & action required:</th>
<th>No action required</th>
<th>Minor optimizations possible</th>
<th>Major optimizations possible</th>
<th>Action mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
<td></td>
<td>> 80</td>
<td>< 80</td>
<td>< 65</td>
<td>< 45</td>
</tr>
</tbody>
</table>
Use Case: Brownfield application for a hydraulic system demonstrator

ETA Learning Factory
- Training curriculum is highly influenced by new research results
- Example: Technology demonstrator for a hydraulic system of machine tools
- Presentation of different design options
- Focus was on the operability of the system
- Didactic subjects were secondary

Goal
Integration of the demonstrator into the training curriculum
LE³-Guide

Use Case: Brownfield application for a hydraulic system demonstrator

Basic type of learning environment according to Questionnaire I

<table>
<thead>
<tr>
<th>Learning environment type: B2</th>
<th>Physical Design</th>
<th>Knowledge Transfer</th>
<th>Prioritization</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Learning objective</td>
<td>DoF 1*</td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Technical components known</td>
<td>Visualization (energy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy saving potentials in the subject known</td>
<td>Complexity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Potential in comparison to other technologies known</td>
<td>Extent of participation</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 x Sum (max. 45)</td>
<td>3 x Sum (max. 45)</td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>Own potential influence known</td>
<td>Haptics (energy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Able to assess cause-effect relationships</td>
<td>Acoustics (energy)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Able to identify energy waste types</td>
<td>Transportability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 x Sum (max. 30)</td>
<td>2 x Sum (max. 30)</td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>Fundamental knowledge of the relevant measurement technology</td>
<td>Abstraction level</td>
</tr>
<tr>
<td></td>
<td></td>
<td>The most important technical terms known and delineated</td>
<td>Modularity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technology benchmark detected</td>
<td>Accompanying material</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 x Sum (max. 15)</td>
<td>1 x Sum (max. 15)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Total (max. 90)</td>
<td>Total (max. 90)</td>
</tr>
</tbody>
</table>

Prioritized learning objectives & design features of an ideal implementation.
LE³-Guide

Use Case: Brownfield application for a hydraulic system demonstrator

Basic type of learning environment according to Questionnaire I

Learning environment type: B2

<table>
<thead>
<tr>
<th>Priority</th>
<th>Knowledge Transfer</th>
<th>Physical Design</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Learning objective</td>
<td>Feature</td>
</tr>
<tr>
<td>A</td>
<td>Technical components known</td>
<td>Visualization (energy)</td>
</tr>
<tr>
<td></td>
<td>Energy saving potentials in the subject known</td>
<td>Complexity</td>
</tr>
<tr>
<td></td>
<td>Potential in comparison to other technologies known</td>
<td>Extent of participation</td>
</tr>
<tr>
<td></td>
<td>3 x Sum (max. 45)</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>Own potential influence known</td>
<td>Haptics (energy)</td>
</tr>
<tr>
<td></td>
<td>Able to assess cause-effect relationships</td>
<td>Acoustics (energy)</td>
</tr>
<tr>
<td></td>
<td>Able to identify energy waste types</td>
<td>Transportability</td>
</tr>
<tr>
<td></td>
<td>2 x Sum (max. 30)</td>
<td>24</td>
</tr>
<tr>
<td>C</td>
<td>Fundamental knowledge of the relevant measurement technology</td>
<td>Abstraction level</td>
</tr>
<tr>
<td></td>
<td>The most important technical terms known and delineated</td>
<td>Modularity</td>
</tr>
<tr>
<td></td>
<td>Technology benchmark detected</td>
<td>Accompanying material</td>
</tr>
<tr>
<td></td>
<td>1 x Sum (max. 15)</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Total (max. 90)</td>
<td>74</td>
</tr>
</tbody>
</table>

Prioritized learning objectives & design features of an ideal implementation

Assessment of the current implementation
Implemented optimizations

Integration of a web-based visualization:

Control stand for a better interaction:
LE³-Guide
Conclusion & Outlook

Current State:
- Support for the designer of a learning environment
 - New developments (greenfield)
 - Revisions (brownfield)
- Addresses the problems of lacking target group orientation and comprehensibility
- Procedure is working manually

Outlook:
- Implementation as a software tool
- Improve of user friendliness
- Validation and revision

Source: Charlotte Coneybeer
Thank you for your interest!

For further questions we are happy to be at your disposal.

Prof. Dr.-Ing. Eberhard Abele
Prof. Dr.-Ing. Joachim Metternich
Institute for Production Management, Technology and Machine Tools
Technische Universität Darmstadt
Otto-Berndt-Straße 2
64287 Darmstadt

Tel.: +49 61 51 | 16 2 00 80
Fax: +49 61 51 | 16 2 00 87
E-Mail: info@ptw.tu-darmstadt.de
Internet: www.ptw.tu-darmstadt.de
Introduction
EU Energy Efficiency Objectives

Energy Costs
- Significant proportion of the total costs
- Rising energy costs expected

Political Relevance
- Political climate targets
- Changes in legislation (e.g. Ecolabels)

Social Responsibility
- Contribution to environmental protection
- Internal corporate objectives

EU Primary Energy Consumption Projections

Source: European Commission