An intelligent bin system for decentrally controlled intralogistics systems in context of Industrie 4.0

7th Conference on Learning Factories
Darmstadt, Germany April 4th – 5th, 2017

Jan Schuhmacher, M.Sc.
Wjatscheslav Baumung, M.Sc.
Prof. Dr.-Ing. Dipl.-Ing. Vera Hummel
Reutlingen University, ESB Business School
Control of intralogistics systems
Requirement for decentralized control systems

Industrie 3.0

- Predefined material flows based on predefined, standardized processes
- Intralogistics system based on complex, centralized material flow controller architectures

Industrie 4.0

- Regulation and reconfiguration of the material flow required at any point of the material flow system → Decentralized control systems → hybrid decision making
- Intralogistics system is composed of cooperating functional units (entities) of conveyor modules, transport units and (software) services

Challenge: Real-time configuration, control and decision making based on intelligent logistic entities
Logistics in cyber-physical production systems
State of research

Control of versatile material flow systems
- Replacement of central material flow computers with decentralized control systems [BUL 2007] [GÜN 2008b] [GÜN 2014]
 - Reduction of system complexity
 - Increase of versatility and responsiveness of material flow systems can be increased
- The basis for decentralized material flow control are cooperating functional units (entities) of conveyor modules, transport units and (software) services [GÜN 2008a] [GÜN 2014]

Decision making
- decision making and optimization of the system is done proactively and iteratively within autonomous controlled systems [KÜH 2015]
- Hybrid decision making: Interactive human-machine decision making combining the specific capabilities of humans and machines synergistically [KÜH 2015] [BOU 2011]

Intelligent bins
- Transcontinental level: Smart standard ISO Containers to track position and condition of goods [LAN 2011] [CHU 2016]
- Small load carrier level: “iBin” integrated into industry service for c-parts and “inBin” prototype of Fraunhofer IML [GÜN 2014]

- The logistical object takes over the tasks of information processing, decision making and execution [HÜL 2006] [NEU 2006]
- Capability to capture, feedback and evaluate events [WIN 2006]
Intelligent bin system

Intelligent bin module building set

<table>
<thead>
<tr>
<th>Parts</th>
<th>Bins</th>
<th>Standardized component</th>
<th>Adaptable component</th>
<th>Hardware</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Localization</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Network Layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Energy monitoring</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Decentralized data storage
- Coupling of material and information flow
- Cooperation/Communication with other logistic entities
- Enabler for centralized material flow systems

Microcontroller
- WiFi
- Build in LiPo Charger
- Loudspeaker (ultrasonic based location)

Hardware
- Sensors
- Actuators
- Displays (3D printed)
- Inlays
Intelligent bin system - Future fields of application
Decentralized, autonomous material supply & Decentralized assistance

Set creation / Order picking

Integrated assembly assistance

Autonomous material transport

Autonomous manufacturing execution

Manufacturing (Self) Execution
- Integration of legacy systems and specialist systems
 - Simulation
 - Personnel planning
 -...

Visualizer
Coupler
/MDC
Prioritization
Event Channel
Relay

Machine-Machine Communication

Cf. Prof. G. Bitsch
ESB Logistics Learning Factory

Vision: Decentralized control of cyber-physical logistics system

Establishment of a CPPS scenario at ESB Logistics Learning Factory

Embedded in various research projects
Thank you for your attention!

Questions

Jan Schuhmacher, M.Sc.
Research Associate
Intralogistics planning and design
ESB Business School
Reutlingen University

Prof. Dr.-Ing. Dipl.-Ing. Vera Hummel
Production and Transportation Logistics, Industrial Engineering
ESB Business School
Reutlingen University

Alteburgstraße 150 | 72762 Reutlingen | Germany
Phone: +49(0)7121 271 3112
jan.schuhmacher@reutlingen-university.de

Alteburgstraße 150 | 72762 Reutlingen | Germany
Phone: +49(0)7121 271 3031
vera.hummel@reutlingen-university.de
<table>
<thead>
<tr>
<th>Reference</th>
<th>Description</th>
</tr>
</thead>
</table>